Quantitative sparse array vascular elastography: the impact of tissue attenuation and modulus contrast on performance.
نویسندگان
چکیده
Quantitative sparse array vascular elastography visualizes the shear modulus distribution within vascular tissues, information that clinicans could use to reduce the number of strokes each year. However, the low transmit power sparse array (SA) imaging could hamper the clinical usefulness of the resulting elastograms. In this study, we evaluated the performance of modulus elastograms recovered from simulated and physical vessel phantoms with varying attenuation coefficients (0.6, 1.5, and [Formula: see text]) and modulus contrasts ([Formula: see text], [Formula: see text], and [Formula: see text]) using SA imaging relative to those obtained with conventional linear array (CLA) and plane-wave (PW) imaging techniques. Plaques were visible in all modulus elastograms, but those produced using SA and PW contained less artifacts. The modulus contrast-to-noise ratio decreased rapidly with increasing modulus contrast and attenuation coefficient, but more quickly when SA imaging was performed than for CLA or PW. The errors incurred varied from 10.9% to 24% (CLA), 1.8% to 12% (SA), and [Formula: see text] (PW). Modulus elastograms produced with SA and PW imagings were not significantly different ([Formula: see text]). Despite the low transmit power, SA imaging can produce useful modulus elastograms in superficial organs, such as the carotid artery.
منابع مشابه
Directional Filtering for Multiple-Driver Magnetic Resonance Elastography Data
D. S. Lake, A. Manduca, Y. Mariappan, R. L. Ehman Mayo Clinic College of Medicine, Rochester, MN, United States Introduction Magnetic resonance elastography (MRE) is a phase contrast based MRI imaging technique that can directly visualize and quantitatively measure propagating acoustic strain waves in tissue-like materials subjected to harmonic mechanical excitation [1]. The data acquired allow...
متن کاملMeasurement of In-vivo Local Shear Modulus by Combining Multiple Phase Offsets MR Elastography
To provide realistic surgical simulation, haptic feedback is important. In the existing surgical simulators, the fidelity of the deformation and haptic feedback is limited because they are based on the subjective evaluation of the expert-user and not on an objective model-based evaluation. To obtain elastic modulus of in-vivo human tissues, magnetic resonance elastography (MRE) was developed. M...
متن کاملQuasi-Static Ultrasound Elastography.
Elastography is a new imaging modality where elastic tissue parameters related to the structural organization of normal and pathological tissues are imaged. Basic principles underlying the quasi-static elastography concept and principles are addressed. The rationale for elastographic imaging is reinforced using data on elastic properties of normal and abnormal soft tissues. The several orders o...
متن کاملInvestigation of Shape Functions Role on the Mesh-free Method Application in Soft Tissue Elastography
In current study, The Mesh-free method based on weak-form formulation coupled with the ultrasound imaging technique is developed. This problem consists in computing the deformation of an elastic non-homogenous phantom by numerical methods (both Mesh-free and Finite Element) and converge their results to the measured deformation by the ultrasound. The shape functions of Mesh-free are approximate...
متن کاملSpherical lesion phantoms for testing the performance of elastography systems.
A set of three cubic one-litre phantoms containing spherical simulated lesions was produced for use in comparing lesion detection performance of different elastography systems. The materials employed are known to be stable in heterogeneous configurations regarding geometry and elastic contrast identical with (storage modulus of lesion material) / (storage modulus of background material), and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical imaging
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2014